Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.

Identifieur interne : 002D12 ( Main/Exploration ); précédent : 002D11; suivant : 002D13

Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.

Auteurs : Amber Vanden Wymelenberg [États-Unis] ; Jill Gaskell ; Michael Mozuch ; Sandra Splinter Bondurant ; Grzegorz Sabat ; John Ralph ; Oleksandr Skyba ; Shawn D. Mansfield ; Robert A. Blanchette ; Igor V. Grigoriev ; Philip J. Kersten ; Dan Cullen

Source :

RBID : pubmed:21551287

Descripteurs français

English descriptors

Abstract

Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls.

DOI: 10.1128/AEM.00508-11
PubMed: 21551287
PubMed Central: PMC3127733


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.</title>
<author>
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
</author>
<author>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
</author>
<author>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21551287</idno>
<idno type="pmid">21551287</idno>
<idno type="doi">10.1128/AEM.00508-11</idno>
<idno type="pmc">PMC3127733</idno>
<idno type="wicri:Area/Main/Corpus">002E29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E29</idno>
<idno type="wicri:Area/Main/Curation">002E29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E29</idno>
<idno type="wicri:Area/Main/Exploration">002E29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.</title>
<author>
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
</author>
<author>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
</author>
<author>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coriolaceae (genetics)</term>
<term>Coriolaceae (growth & development)</term>
<term>Fungal Proteins (isolation & purification)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (growth & development)</term>
<term>Pinus (microbiology)</term>
<term>Populus (microbiology)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bois (microbiologie)</term>
<term>Coriolaceae (croissance et développement)</term>
<term>Coriolaceae (génétique)</term>
<term>Expression des gènes (MeSH)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (génétique)</term>
<term>Pinus (microbiologie)</term>
<term>Populus (microbiologie)</term>
<term>Protéines fongiques (isolement et purification)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Pinus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Gene Expression Profiling</term>
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Expression des gènes</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21551287</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>77</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.</ArticleTitle>
<Pagination>
<MedlinePgn>4499-507</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00508-11</ELocationID>
<Abstract>
<AbstractText>Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vanden Wymelenberg</LastName>
<ForeName>Amber</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaskell</LastName>
<ForeName>Jill</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mozuch</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>BonDurant</LastName>
<ForeName>Sandra Splinter</ForeName>
<Initials>SS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sabat</LastName>
<ForeName>Grzegorz</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skyba</LastName>
<ForeName>Oleksandr</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blanchette</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kersten</LastName>
<ForeName>Philip J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE29659</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055453" MajorTopicYN="N">Coriolaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
<ArticleId IdType="pii">AEM.00508-11</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00508-11</ArticleId>
<ArticleId IdType="pmc">PMC3127733</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2008 Jun;7(6):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Feb 20;128(3):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 May;86(6):1903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20306191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Jun;148(Pt 6):1939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 Nov 11;57(21):9944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19817425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Apr;62(4):1329-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8919793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Dec;34(Pt 6):1165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2008 Aug 5;43(2):205-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2001 Apr;50(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Nov;274(21):5727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Aug;71(6):898-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16374635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2008 Jul;19(4):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2004 Sep;46(3):166-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15278289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1991 Jul;19(2-3):271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Dec;60(12):4387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7811079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Oct;63(10):3804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 May;111(Pt 5):509-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jan;259(1-2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9914479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Sep;153(Pt 9):3023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 15;39(32):9826-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Sep;80(4):719-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Dec 14;314(5):1097-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jul;10(7):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Apr;13(4):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2001 Apr 27;87(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11267698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):23688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1429709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1991 Nov;21(1-2):143-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Nov 20;531(3):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 May;32(3):501-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Sep 1;75(17):4646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14632076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Feb;44(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Dec 1;280 ( Pt 2):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1747104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1988 Sep 15;155(2):626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2844176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Aug 29;351(1):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8076681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Jul 21;118(1):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21551287
   |texte=   Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21551287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020